
Automation of the nsls2forge conda infrastructure

Thomas Hopkins, Undergraduate, Rensselaer Polytechnic Institute, Troy, NY 12180
Mentor: Maksim Rakitin, NSLS-II, Brookhaven National Laboratory, Upton, NY 11973

Abstract

The nsls2forge conda infrastructure at the National Synchrotron 

Light Source II (NSLS-II) at Brookhaven National Laboratory requires 

large amounts of automation to be feasible in the long term. Through the 

use of emerging continuous integration technologies, we have created a 

bot that will automatically search for and update software packages as 

they release. This makes newly created or updated software packages 

created at NSLS-II readily available to install at any beamline workstation 

or personal computer. The approach we took includes the development of 

a large dependency graph, the automation of file migrations, and the 

employment of cloud computing for easy access. A dependency graph is a 

directed acyclic graph that contains a node for each software package 

with links highlighting the relationship between packages. This is 

essential for maintaining a hierarchy of packages which is used by the bot 

for correct and efficient updating. Migrations are used to change the 

metadata of a specific package by updating its configuration files. We 

make use of Microsoft Azure for hosting our bot that executes its job a 

few times a day. Conda is well known in the scientific Python community 

for providing software packages and environments. Existing open source 

software, by the conda-forge team, provided many key utilities and ideas 

for the implementation of our bot. By automating the processes of our 

conda infrastructure at the NSLS-II, we are providing up-to-date, tested, 

and packaged software at a significantly better rate and volume than 

before.

Introduction

Conda is an open-source, cross-platform, language-agnostic package 

manager and environment management system. NSLS-II uses Conda to 

deploy read-only production environments at the beamlines. Software 

packages that are developed and built at NSLS-II may be needed at many 

different beamlines and analysis servers. The Anaconda Cloud allows us 

to publish software packages so we can share our software not only with 

others at NSLS-II but also around the world.

Most packages that are uploaded to the Anaconda Cloud have a 

separate “feedstock” repository. Feedstock repositories allow for 

automatic testing of new versions of software packages on many different 

platforms prior to being published. This is done using continuous 

integration/continuous deployment (CI/CD) technologies such as 

Microsoft Azure and TravisCI. We publish our packages from feedstock 

repositories to the nsls2forge conda channel on the Anaconda Cloud.

Managing feedstock repositories at the nsls2forge requires a lot of 

manual work. This includes manually editing configuration files (Figure 

1), rendering the feedstock using conda-smithy, submitting pull requests, 

and monitoring build statuses. All these steps are required for each of the 

200+ feedstock repositories belonging to nsls2forge.

Figure 1: meta.yaml configuration file for the event-model-

feedstock repository. Found here https://github.com/nsls-ii-

forge/event-model-feedstock/blob/master/recipe/meta.yaml

Software that we write at NSLS-II often depends on other software 

to build and function correctly. This can be seen most notably when 

importing different software modules when writing code. For example, 

writing some software in Python that imports functionality from the 
numpy package means that that software depends on numpy. This adds 

an interesting level of complexity to our problem of automation.

Methods

There are two main ways we chose to automate the nsls2forge conda 

infrastructure. The first is that we created a library of utilities that allows 

the user to gather important information and make changes to items in 

feedstock repositories. The second is a bot that automatically updates 

configuration files, re-renders, and submits pull requests for feedstocks at 

the nsls2forge.

We decided to create a suite of utilities that would not only help the 

end-user perform operations on feedstock repositories, but also be used 

by the bot to perform the entire process automatically. Other utilities, such 

as the dashboard (Figure 2) help maintainers see an overview of every 

feedstock’s attributes. Figure 3 highlights the four main utilities we built.

When automatically updating software packages with new versions, 

a problem arises when considering the relationships between packages. 

To alleviate this problem, we implemented a directed acyclic graph 

(Figure 4) to represent every feedstock package at nsls2forge along with 

their dependencies. This method of representing the relationship between 

packages was developed and implemented by the conda-forge team for 

similar purposes [1, 2]. We will refer to this graph as the dependency

graph.

Each node in the graph can be represented by a piece of software. 

This definition can range from programming languages to software 

applications and software packages. We store each feedstock along with 

its raw configurations at each node in the graph. Edges between nodes are 

defined as an “is a dependency of” relationship. For example, the package 

event-model imports some functionality from numpy, therefore, numpy

is a dependency of event-model. A subgraph of the full dependency 

graph is shown in Figure 5, displaying only event-model and its related 

pieces of software. Sorting the nodes topologically gives us a correct 

order to update software packages so no dependency issues come up at 

build time.

The bot itself will run in the cloud and use the various prebuilt 

utilities to automatically update software package feedstock with new 

versions as they release. It will go through a cycle of retrieving all 

feedstock names from nsls2forge, creating/updating the dependency 

graph, retrieving new versions of packages directly from their sources, 

editing configuration files, and finally submitting pull requests to 

feedstock repositories on GitHub.

To edit configuration files with new versions, we use file migrations 

(Figure 6). These migrations were first developed by the conda-forge 

team for their bot [1, 2]. They allow us to keep a record of all changes 

that are made by the bot and update specific portions of configuration 

files.

Figure 4: Directed Acyclic Graph 

(DAG). Useful for representing a 

complex set of relationships.

Figure 5: A subgraph of our much larger dependency graph. This subgraph shows only the software associated 

with the event-model Python package built at nsls2forge. Nodes (in blue) along the bottom are packages that 

event-model depends on to run/build. Nodes along the top are packages that require event-model to 

run/build. This structure for representing package dependencies was developed by the conda-forge team [1, 2].

Utility Purpose

all-feedstocks Performs operations on every feedstock belonging to a GitHub organization

dashboard Creates a dashboard with build statuses, downloads, versions, and code health for every feedstock

graph-utils Performs operations on the dependency graph (build, query, and update)

meta-utils Performs operations on individual feedstock configuration files

Figure 3: Table of utilities built to automate operations at the nsls2forge. These are available via the command line 

interface. The code can be found here https://github.com/nsls-ii-forge/nsls2forge-utils.

Figure 2: Part of the dashboard for feedstock repositories at 

nsls2forge. Lists build statuses, code health, versions, and 

number of downloads for every feedstock. Full dashboard can 

be found here https://github.com/nsls-ii-forge/project-
management.

Figure 6: Simple version migrator used to update configuration YAML files. Original file on the left, migrator 

in the middle, and resulting file on the right. Tags are only updated if the version number is greater than the 

original version number.

Name Build Status Versions Downloads

Conclusion

We have shown that the current process for maintaining feedstock 

packages at the nsls2forge is unfeasible in the long term. Automation of 

the nsls2forge’s operation helps alleviate most of the manual work in the 

maintenance process. The library of utilities helps not only the bot but 

also any user or maintainer work more efficiently in diagnosing issues 

and performing updates. The dependency graph is a useful representation 

for recognizing how packages relate to each other and for making 

decisions when updating packages. The bot provides an end-to-end tool 

that will update versions of packages automatically. While the changes 

made by the bot will still need to be reviewed manually, it improves the 

speed and volume at which packages can be updated and tested at 

nsls2forge.

Some future improvements to the utilities and bot are to extend the 

functionality to update more than just version numbers of packages, 

retrieve more complex information from the dependency graph, perform 

file migrations across all feedstock repositories at once, and create an 

interactive version of the bot that responds to requests for changes in 

feedstock repositories.

Acknowledgements

I wish to thank my mentor, Dr. Maksim Rakitin, for his 

professionalism and generosity during the SULI program. Further, I wish 

to express my gratitude to the conda-forge and regro teams for providing 

many key utilities and ideas for the implementation of our bot. This 

project was supported in part by the U.S. Department of Energy, Office of 

Science, Office of Workforce Development for Teachers and Scientists 

(WDTS) under the Science Undergraduate Laboratory Internships 

Program (SULI).

References

[1] Wright, C. 2020. The Automation of Conda-Forge. AnacondaCON

2020. https://gateway.on24.com/wcc/eh/2336732/lp/2357492/the-
automation-of-conda-forge/?campaign=web

[2] regro/cf-scripts GitHub repository. Updated 2020. 

https://github.com/regro/cf-scripts

Hopkins, Thomas

https://github.com/nsls-ii-forge/event-model-feedstock/blob/master/recipe/meta.yaml
https://github.com/nsls-ii-forge/nsls2forge-utils
https://github.com/nsls-ii-forge/project-management
https://gateway.on24.com/wcc/eh/2336732/lp/2357492/the-automation-of-conda-forge/?campaign=web
https://github.com/regro/cf-scripts

